Existence of variational solutions to doubly nonlinear nonlocal evolution equations via minimizing movements

نویسندگان

چکیده

We prove existence of variational solutions for a class doubly nonlinear nonlocal evolution equations whose prototype is the double phase equation $$\begin{aligned}&\partial _t u^m + P.V.\int _{\mathbb {R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}}\\&\qquad \quad +a(x,y)\frac{|u(x,t)-u(y,t)|^{q-2}(u(x,t)-u(y,t))}{|x-y|^{N+qr}} \,\mathrm{d}y = 0,\,m>0,\,p>1,\,s,r\in (0,1). \end{aligned}$$ make use approach minimizing movements pioneered by De Giorgi (in Boundary value problems partial differential and applications, volume 29 RMA Res. Notes Appl. Math., Masson, Paris, pp 81–98, 1993. https://mathscinet.ams.org/mathscinet-getitem?mr=1260440 ) Ambrosio (Accademia Nazionale delle Scienze detta dei XL. Rendiconti. Serie V. Memorie di Matematica e Applicazioni. Parte I, 19:191–246) refined Bögelein, Duzaar, Marcellini coauthors to study parabolic with nonstandard growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Mild Solutions for Nonlocal Semilinear Fractional Evolution Equations

In this paper, we investigate a class of semilinear fractional evolution equations with nonlocal initial conditions given by (1) ⎧⎨ ⎩ dqu(t) dtq = Au(t)+(Fu)(t), t ∈ I, u(0)+g(u) = u0, where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s Theorem, Schauder’s ...

متن کامل

Existence of Solutions for Nonlinear Mixed Type Integrodifferential Functional Evolution Equations with Nonlocal Conditions

and Applied Analysis 3 The evolution system R t, s is said to be equicontinuous if for all bounded set Q ⊂ X, {s → R t, s x : x ∈ Q} is equicontinuous for t > 0. x ∈ C −q, b , X is said to be a mild solution of the nonlocal problem 1.1 , if x t φ t g x t for t ∈ −q, 0 , and, for t ∈ J , it satisfies the following integral equation: x t R t, 0 [ φ 0 g x 0 ] ∫ t 0 R t, s f ( s, xs, ∫ s 0 K s, r, ...

متن کامل

Existence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem

In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.

متن کامل

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Evolution Equations

سال: 2022

ISSN: ['1424-3199', '1424-3202']

DOI: https://doi.org/10.1007/s00028-022-00834-2